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Abstract

How well do representations learned by ML models align with
those of humans? Here, we consider concept representations
learned by deep learning models and evaluate whether they
show a fundamental behavioral signature of human concepts,
the typicality effect. This is the finding that people judge some
instances (e.g., robin) of a category (e.g., Bird) to be more typ-
ical than others (e.g., penguin). Recent research looking for
human-like typicality effects in language and vision models
has focused on models of a single modality, tested only a small
number of concepts, and found only modest correlations with
human typicality ratings. The current study expands this be-
havioral evaluation of models by considering a broader range
of language (N = 8) and vision (N = 10) model architectures.
It also evaluates whether the combined typicality predictions of
vision + language model pairs, as well as a multimodal CLIP-
based model, are better aligned with human typicality judg-
ments than those of models of either modality alone. Finally,
it evaluates the models across a broader range of concepts
(N = 27) than prior studies. There were three important find-
ings. First, language models better align with human typicality
judgments than vision models. Second, combined language
and vision models (e.g., AlexNet + MiniLM) better predict
the human typicality data than the best-performing language
model (i.e., MiniLM) or vision model (i.e., ViT-Huge) alone.
Third, multimodal models (i.e., CLIP ViT) show promise for
explaining human typicality judgments. These results advance
the state-of-the-art in aligning the conceptual representations
of ML models and humans. A methodological contribution
is the creation of a new image set for testing the conceptual
alignment of vision models.
Keywords: Concepts; Categorization; Typicality Effect; Ma-
chine Learning; Multimodal Models; Computational Modeling

Introduction
Categorization is a fundamental aspect of cognition. Assign-
ing a new stimulus to a category enables humans to make in-
ferences about its unknown or unobservable properties, facil-
itating taking action in the world (Murphy, 2002). A classic
proposal in cognitive science is that not all the members of a
category have the same status (Rosch, 1975). Rather, mem-
bers vary in their typicality, with some members (e.g., robin)
more typical of a category (e.g., Birds) than others (e.g., pen-
guin). Moreover, people are faster to understand sentences
about typical vs. atypical category members, and are quicker
to give the category label (e.g., ”Birds”) of typical vs. atypical
members when presented with images (Murphy, 2002).

Here, we investigate whether Large Language Models
(LLMs) and computer vision (CV) models also show typical-
ity gradients. Prior studies that have investigated this ques-
tion have found suggestive results (Misra, Ettinger, & Rayz,

2021; Upadhyay, Mittal, & Varma, 2022). We go beyond this
work to examine a larger number of LLMs and CV models,
and to evaluate these models using newer human typicality
data collected over a larger number of categories. We inves-
tigate for the first time whether the combined typicality pre-
dictions of vision + language model pairs better align with
human typicality judgments than those of models of either
modality alone. We also explore the potential of multi-modal
models (i.e., CLIP).

The Typicality Effect

The typicality effect is that people regard some members
as “better” examples of a category than others. Investigat-
ing typicality gradients requires collecting data from humans.
The most common procedure is to give participants a cate-
gory label (e.g., Fruits) and to have them write down as many
exemplars of the category as they can in a fixed amount of
time, usually 30 seconds (Battig & Montague, 1969; Castro,
Curley, & Hertzog, 2021; Van Overschelde, Rawson, & Dun-
losky, 2004). The typicality of a member is defined as the
proportion of participants who produce it. Another approach
is to provide a category label and a sequence of members and
have participants rate the “goodness” of each member on a
scale ranging, for example, from 1 (very typical) to 7 (very
atypical) (Rosch, 1975). The typicality of a member is its
average rating across participants.

Typicality in ML Models

We investigate whether ML models trained on large corpora
or image sets also show the typicality effect. These models
learn about the statistical structure of the cognitive environ-
ment to perform word prediction tasks or image classification
tasks, respectively. Here, we evaluate whether as a conse-
quence of this training, they become sensitive to the typicality
gradients that organize the members of categories, learning
them as latent representations.

Typicality in Language Models Researchers have looked
for typicality effects in language models. An early study in-
vestigated whether word2vec embeddings could be used to
predict category typicality data (Heyman & Heyman, 2019;
De Deyne et al., 2008). The mean correlation between
word2vec and humans across 16 categories was only 0.29. A
more recent study (Misra et al., 2021) investigated the align-
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ment of more modern transformer-based models (including
RoBERTa and GPT-2) to the Rosch (1975) typicality ratings
for 10 categories. The 19 models tested showed a range of
correlations, with the larger variants of RoBERTa and GPT-2
achieving the highest values of approximately 0.40. Bhatia
and Richie (2022) developed a BERT-based model and eval-
uated it against 25 findings on semantic cognition, including
that of typicality gradients. The model’s typicality ratings
across 10 categories correlated 0.32 with the human ratings
of Rosch (1975). Thus, we see that NLP models have shown
modest abilities to account for the typicality effect.

Typicality in Vision Models Researchers have also inves-
tigated whether vision models align with human conceptual
understanding (Battleday, Peterson, & Griffiths, 2021). An
early study (Peterson, Abbott, & Griffiths, 2018) had par-
ticipants rate the pairwise similarity of 120 images of ex-
emplars from each of 6 categories. They compared these
to the cosine similarities of the representations on the fi-
nal fully connected layers of several CNN models, finding
moderate correlations for VGG-16 (Simonyan & Zisserman,
2014) in particular. Subsequent research combined the low-
level visual processing of CNNs with cognitive science mod-
els of decision-making. These hybrid models were evaluated
against data collected on CIFAR-10 test images (Battleday,
Peterson, & Griffiths, 2020; Singh, Peterson, Battleday, &
Griffiths, 2020).

The most recent work in this area evaluated ’stacked’ meth-
ods for approximating human similarity judgments (Marjieh,
Sucholutsky, van Rijn, Jacoby, & Griffiths, 2023) This has
shown the value-added of cognitive science models but has
not addressed the typicality effect.

Most relevant is Upadhyay et al. (2022), who investigated
whether the CNN model VGG-19 shows typicality gradients.
This proof-of-concept study focused on the well-studied Bird
category, finding only small (0.32) and non-significant cor-
relations between model-predicted and human typicality rat-
ings. Thus, it remains an open question whether vision mod-
els can account for the typicality effect observed in humans.

Research Goals Despite recent work, large gaps remain in
our understanding of whether ML models trained on large
data sets acquire, purely through experience, conceptual rep-
resentations that resemble those of humans. The current study
addressed these gaps through the lens of the typicality effect.
There were four research goals:

1. To evaluate the alignment between a large number of lan-
guage models of varying architectures/sizes and recently
collected human typicality ratings across a large number
of categories.

2. To do the same for a large number of vision models of vary-
ing architectures/sizes.

3. To evaluate, for the first time, whether combining the pre-
dictions of a language model and a vision model offers a
better account of human typicality than either model alone.

4. To evaluate, for the first time, whether a multimodal model

offers better predictions of human typicality than models
of a single modality (vision or language).

The current study also makes two methodological contribu-
tions. The first is to evaluate ML models across a broader
range (N = 27) of categories than has previously been con-
sidered, using human data that has been collected in the past
few years rather than decades ago. The second is to develop
a new set of ‘naturalistic’ images to test the conceptual align-
ment of vision models.

Methods
Data Preparation
Human Typicality Ratings We used the human typicality
ratings of (Castro et al., 2021). This is the most recent dataset
of its kind, and it supersedes the norms (Rosch, 1975) used
in many prior studies of the alignment of language and vision
models to human categorization. 250 participants provided
exemplars of each of the 70 categories – as many as possible
within a 30-second time frame. The typicality of an exemplar
was defined as the proportion of participants who produced
it. We selected 27 concepts whose exemplars have concrete
and distinct visual depictions, to be able to evaluate the vision
models.

Image Collection and Processing Images were collected
via the Google Image Search package (arrrlo, 2022). For each
exemplar of each category, we used its label as a search string
and collected at least 20 images (after removing corrupted
images and images with unusable file formats). We used the
CarveKit Image Background Removal Tool (OPHoperHPO,
2022) to remove the backgrounds of all images where the
background was distinct from the exemplar itself, e.g., re-
moving the sky and tree branches from an image of the robin
exemplar of the Bird category. Removed backgrounds were
replaced with a plain white background. Background removal
was not performed for the Color, Dwelling, Earth Formation,
Fabric, Tree, and Weather categories because the exemplars
were often inseparable from the backgrounds. We manually
reviewed the outputs of automated image collection and back-
ground removal and discarded images that did not depict the
intended exemplar and those with improper background re-
movals. These images were converted to the JPG file format,
resized to 224 x 224 pixels, and normalized using the Ima-
geNet mean and standard deviation values. Our image col-
lection and processing code is public, but please contact the
authors for access to the specific image set used for the ex-
periments discussed in this paper. 1

Model Selection
Language Models We selected several pre-trained
language models spanning a range of architectures:
word2vec (Mikolov, Chen, Corrado, & Dean, 2013), GloVe
(Pennington, Socher, & Manning, 2014), RoBERTa-large

1We make all our code publicly available at https://github
.com/svemuri8/cv-nlp-typicality/tree/main



(Y. Liu et al., 2019), XLNet-base (Yang et al., 2020),
MiniLM (Wang et al., 2020), MPNet (Song, Tan, Qin, Lu,
& Liu, 2020), T5-large (Raffel et al., 2020), and GPT (text-
embedding-ada-002) (Brown et al., 2020). All models lacked
classification heads or decoders. Instead, they produced
word/sentence embedding vectors. The GloVe and word2vec
implementations were sourced from Gensim (Rehurek &
Sojka, 2010) and the GPT embeddings from OpenAI’s API
(OpenAI, 2023b). All other models are from HuggingFace’s
Transformers Library (Reimers & Gurevych, 2019).

Vision Models We selected several vision models pre-
trained on ImageNet1K (Deng et al., 2009) spanning dif-
ferent architectures: AlexNet (Krizhevsky, 2014), VGG19
(Simonyan & Zisserman, 2015), InceptionV3 (Szegedy,
Vanhoucke, Ioffe, Shlens, & Wojna, 2015), ResNet-50
(He, Zhang, Ren, & Sun, 2015), DenseNet-161 (Huang,
Liu, van der Maaten, & Weinberger, 2018), MobileNetV2
(Sandler, Howard, Zhu, Zhmoginov, & Chen, 2018),
EfficientNetV2-medium (Tan & Le, 2021), ViT-base-16
(Dosovitskiy et al., 2021), Swin-base (Z. Liu et al., 2021), and
ConvNext-base (Z. Liu et al., 2022). We removed the classi-
fication heads, leaving only the feature extractors so that each
model outputted a raw feature vector for each image passed
in.

Multimodal Models We selected the pre-trained CLIP
ViT-large-14 model (Radford et al., 2021) as the represen-
tative multimodal model for our investigation. We used this
model to generate image and text embeddings and logit scores
indicating alignment between text-image input pairs. The
model implementation was sourced from HuggingFace.

Task Paradigms

Language Model Task To estimate the typicality of an ex-
emplar of a category in a language model, we encode the ex-
emplar name as a string, pass it through the language model,
and obtain the corresponding word embedding. We then cal-
culate the cosine similarity, as found by Bhatia and Richie
(2022) to be the best metric, between this exemplar vector
and that of the category prototype, with a higher value indi-
cating that the exemplar is more typical. There are two natu-
ral methods for obtaining the prototype of a category: as the
average of all exemplar vectors, and as the word embedding
obtained by passing the category label to the language model.
We explored both methods, finding comparable results. We
adopt the former method to maintain consistency with proto-
type computation for the vision models and with prior work
(Heyman & Heyman, 2019).

To evaluate a language model’s alignment for a given cat-
egory, we compute the Spearman correlation between the co-
sine similarities (representing the typicality judgments of the
language model) with the human typicality rankings of exem-
plars from Castro et al. (2021).

Vision Model Task Recall that we collected several images
of each exemplar. We pass each image through the vision
model, obtain an image embedding, and across these com-
pute the average exemplar vector. The prototype vector for
the category is defined as the mean of all of these (average)
exemplar vectors. We compute the typicality of each exem-
plar in a category as the cosine similarity between its (av-
erage) exemplar vector and the mean prototype vector. We
take these as the typicality judgments of the vision model and
compute the Spearman correlation with the human typicality
rankings from Castro et al. (2021).

Pilot Exploration: Single vs Multiple Image Exemplar
Representations Choosing to compute the exemplar vec-
tor as an average of multiple image vectors ensures that our
results are not tuned to the choice of a specific exemplar im-
age, and increases the chances that they generalize across im-
ages. To justify this approach, we conducted a pilot experi-
ment using the VGG-19 vision model and the Bird category.
Using our average vector approach, the Spearman correlation
between the model’s typicality ratings and those of humans
was 0.242. We then examined the consequences of instead
using a single image for each exemplar, running 100 trials
where we randomly selected one image for each exemplar
and recomputed the correlation. These ranged from -0.247 to
0.469, with an average of 0.094. Thus, we conclude that us-
ing only one image of each exemplar produces unstable (and
artificially low) correlations with human typicality ratings.

Combined Model Task To address the third research ques-
tion, we evaluate each language + vision model pair. Specif-
ically, for each category, we fit a linear model predicting the
typicality of an exemplar from its prototype (i.e., the cosine
similarity between its vector representation and that of the
prototype) in the language model and its prototype in the
vision model. We record the (standardized) Beta weight of
each predictor variable and evaluate the respective contribu-
tions of each modality. We also capture the Spearman corre-
lation coefficient between the predicted rank-ordering of the
exemplars and the human typicality ranking from Castro et
al. (2021). These values are used, respectively, to assess the
respective contributions of language versus vision models in
making these predictions and to determine which model pairs
perform best in modeling human typicality ratings.

Multimodal Model Task The CLIP ViT model produces
an embedding for each of the modalities (i.e., vision and text
inputs) and outputs a logit score representing their alignment
in embedding space. We use text and image-based embed-
dings to generate category and mean prototypes, mirroring
the earlier approaches explored for the language and vision
model tasks. We define the category prototype as the embed-
ding of the category input as text and the mean prototype as
the average of all representative exemplar image vectors. For
the category prototype approach, the direct text embedding of



the exemplar is taken to be the exemplar representation. For
the mean prototype approach, the average of all the image
embeddings of an exemplar is taken to be the exemplar rep-
resentation. As with the language and vision tasks, human-
model alignment was computed as the Spearman correlation
of human typicality ratings and the cosine similarity between
exemplar vectors and the corresponding prototype vector for
the category (representing model typicality).

We evaluate two additional approaches for this task. The
first looks at appending the vectors of different modalities.
In this appended prototype approach, we define an exemplar
representation as the concatenated exemplar representations
from the category and mean prototype approaches, producing
a vector that is the concatenation of the projections of exem-
plar text embedding and average exemplar image embedding
into joint CLIP embedding space. The typicality alignment is
computed as before, with the Spearman correlation between
human typicality and the cosine similarity between exemplar
and prototype vectors.

In the final, cross-modality approach approach, we lever-
age the CLIP model’s computation of logit scores to represent
the alignment between image and text representations. For
this approach, we pass an exemplar image and the category
name as an image-text pair input taken by CLIP. The pro-
duced logit score represents the alignment between modal-
ities. It is then averaged for all exemplar images to provide
the overall alignment score between the exemplar and the cat-
egory. We calculate the alignment of model and human typi-
cality for each category as the Spearman correlation between
the exemplar logit scores and human typicality ratings.

Results
Language Models

Model Mean Stdev
all-MiniLM-L12-v2 0.429 0.153
all-mpnet-base-v2 0.424 0.185
all-roberta-large-v1 0.274 0.208
glove-twitter-200 0.421 0.186
sentence-t5-base 0.327 0.133
sentence-t5-large 0.373 0.251
sentence-t5-xl 0.402 0.279
sentence-t5-xxl 0.406 0.215
text-embedding-ada-002 0.304 0.121
word2vec-google-news-300 0.222 0.166
xlnet base cased 0.094 0.106

Table 1: Mean and standard deviation for Spearman correla-
tions across all 27 categories by language model.

We first consider the alignment of the language models.
Averaging the Spearman correlations across all 27 categories
for each model, we observe a range across the models, with a
maximum of 0.429 for MiniLM and a minimum of 0.094 for
XLNet; see Table 1. The mean correlation across the models

is 0.259 (SD = .165). Notably, all models achieve a posi-
tive average correlation, signaling general alignment between
their predicted typicalities and those of humans.

Although MiniLM performed best among the language
models, we note that GloVe, the second oldest model tested,
achieved comparable performance (ρ = 0.421). This surpris-
ing result is consistent with the (Bhatia & Richie, 2022) study
of the earlier generation language models that we also eval-
uated: among them, GloVe best accounted for the pairwise
(exemplar-exemplar) similarity ratings made by humans.

Vision Models

Model Mean Stdev
alexnet 0.140 0.223
convnext base 0.058 0.186
densenet161 0.051 0.165
efficientnet v2 l 0.074 0.153
efficientnet v2 m 0.053 0.215
efficientnet v2 s 0.081 0.207
inception v3 0.015 0.223
mobilenet v2 0.067 0.214
resnet50 0.037 0.203
swin b 0.058 0.226
vgg19 0.109 0.224
vit b 16 0.069 0.230
vit h 14 0.146 0.166
vit l 16 0.077 0.204

Table 2: Mean and standard deviation for Spearman correla-
tions across all categories by vision model.

We next consider the alignment of the vision models. Av-
eraging the Spearman correlations across all 27 categories for
each model, we see that the vision models show lower align-
ment than the language models. The average correlation is
only 0.0365, ranging from a maximum of 0.1463 (ViT-Huge)
to a minimum of 0.0148 (Inceptionv3); see Table 2. Like the
language models, the vision models all showed positive aver-
age correlations, but their small size indicates a much weaker
alignment to human typicality ratings. Paralleling what was
found for the language models, there was surprising parity
between newer and older models. AlexNet, the oldest vision
model architecture we considered, performed nearly as well
(ρ = 0.140) as the best-performing vision model ViT-Huge
(ρ = 0.146), and substantially better than VGG-19, the third
highest-performing model (ρ = 0.101).

Combined Models
We paired all language models with all vision models and, for
each pair, combined the typicality predictions of each model
in a linear model to predict the human typicality ratings for
each category. As expected (because adding predictor vari-
ables never decreases model fit), the paired models achieved
higher correlations than the modality-specific models: com-
pare Figure 1 against Tables 1 and 2. Interestingly, the com-
bination of the best-performing vision model (ViT-Huge) and



Figure 1: For each (language, vision) model combination, the
Spearman correlation between its predicted typicalities and
the human typicalities, averaged across all categories.

the best-performing language model (MiniLM) did not have
the highest correlation with the human typicality data among
all of the model pairs. Instead, the combination of MiniLM
with AlexNet showed the highest correlation at 0.4995. This
indicates that the two models make differential (vs. overlap-
ping) contributions to predicting the typicality of exemplars.

Finally, we evaluated whether the typicalities of some cat-
egories might be driven more by vision than language. We
focused on the best-performing combined model, which is
AlexNet + MiniLM. Figure 2 shows the Beta weights for each
of the linear models predicting the 27 categories. Interest-
ingly, for this combined model, the vision variable contributes
to predicting typicality for many of the categories. This is
most strikingly the case for Kitchen Utensil and Weather.

To aid reader comprehension for Figure 2, we organized
the concepts into 7 supercategories and assigned them to a
designated shape: Environment (Triangle), Abstract (X), Ve-
hicle (Diamond), Man-Made Miscellaneous (Square), Plant
(Plus), Animal (Circle), Man-Made Tool (Upside Down Tri-
angle), and Garment (Star).

Multimodal Model
Table 3 shows the results of the multimodal approaches. The
mean prototype approach yields a mean Spearman correlation
coefficient that is larger (r = 0.265) than that of the leading vi-
sion model (r = 0.146), showing that introducing information
through alignment with text embeddings was able to align im-
age representations more closely with human concepts.

The performance of the category prototype approach is
close to the results of the best language models of similar size,

Figure 2: Beta weights of the linear models predicting the
typicalities of each category for the best-performing com-
bined model (AlexNet + MiniLM).

showing that at the very least, introducing information from
the vision modality does not adversely affect performance.

The appended prototype approach does not improve align-
ment with human typicality judgments compared to the cate-
gory prototype approach. Again, it is worth noting the silver
lining here: that explicitly adding exemplar image represen-
tations did not harm the overall alignment of exemplar repre-
sentations with those of humans.

Finally, the cross-modality approach, with its subpar re-
sults, suggests that there may exist a fundamentally nonhu-
man conceptual gap between image and text representations
in the joint embedding space of the CLIP model.

Approach Mean Stdev
category 0.412 0.164
mean 0.265 0.169
appended 0.413 0.164
cross-modality 0.095 0.174

Table 3: Mean and standard deviation for Spearman correla-
tion across all categories for CLIP ViT.

Discussion
Summary of Findings
The current study addressed four primary research goals. The
first was to evaluate whether language models have exemplar
representations that show similar typicality gradients as those



documented for humans. This was the case, with MiniLM
achieving the highest correlation (ρ = 0.429) – one higher
than has been observed in prior studies that used earlier-
generation language models, older human data sets, and a
narrower range of categories (Misra et al., 2021). The second
goal was to ask the same question of vision models. Only one
prior study (Upadhyay et al., 2022) has addressed this goal,
and for only one model (VGG-19) and one category (i.e.,
Birds). The modest correlation documented there held for the
broader range of vision models and categories investigated
here. The best-performing model, ViT-Huge, produced typi-
cality predictions that correlated only modestly (ρ = 0.1463)
with those of humans. The third goal was to examine, for
the first time, whether combining language and vision mod-
els – consistent with the multimodal nature of cognition –
produces even better predictions. This was indeed the case,
with the AlexNet + MiniLM pairing achieving a 0.4995 cor-
relation with the human typicality ratings. The final goal was
to examine the alignment of an inherently multimodal model
with human typicality judgments. We found that there was a
sizable correlation between the two, with the mean approach
using the vision portion of the model (ρ = 0.2645) showing
far more promising results than vision models trained on im-
age data alone, and the category approach using the language
portion of the model (ρ = 0.4115) showing equal if not better
results than models trained purely on text data.

Taken together, these findings advance the state of the art
in aligning the conceptual representations of ML models and
humans. An additional methodological contribution is the
creation of a new image set for testing the conceptual align-
ment of vision models.

Limitations and Future Directions
The limitations of the current study lead naturally to future
directions for research, so we discuss both together.

Our investigation of only one multimodal model (CLIP
ViT) may not be appropriately representative of the full po-
tential of the multimodal approach, and in more advanced
multimodal models, the different modalities may complement
each other even more strongly to form better conceptual rep-
resentations than were observed here. For example, an image
of a live chicken should lead to a textual distribution shift
where the combined representation of chicken is closer to the
representation of a Bird than the representation of chicken
as a food in the embedding space. Further work on multi-
modal contextual alignment for concepts is a goal for future
research.

The current study lacks a thorough investigation of large
generative language models like GPT-4 (OpenAI, 2023a) and
LLaMA (Touvron et al., 2023) which have shown strong per-
formance for a large variety of tasks. Future work can in-
vestigate prompt-based cognitive modeling of the typicality
effects seen in humans using these and similar models.

An important question is why the vision models show
lower alignment with human typicality judgments than the
language models. A possible explanation for their lower

alignment is that a more significant part of image representa-
tions are comprised of local information like texture. By con-
trast, humans rely more on overall shape when making cate-
gorization decisions (Kurbat, Smith, & Medin, 2019; Rosch,
Mervis, Gray, Johnson, & Boyes-Braem, 1976). Conversely,
the superior performance of the language models may be at-
tributed to the text corpora on which they are trained men-
tioning the attributes of exemplars in the same context as their
categories. This may enable them to better capture attribute
frequency, which is known to be highly correlated with typ-
icality (Rosch, 1975). Future research should explore these
and other explanations for the difference performance levels
of language and vision models.

Another limitation may have been our choice to process
the images and replace their natural backgrounds with white
backgrounds. We did so to avoid the models forming blended
representations rather than representations of single exem-
plars. For example, consider an image of a sparrow (from
the Bird category) perched on an oak tree (from the Trees
category). However, it is the case that the processed images
are different from the naturalistic images on which the mod-
els were trained, which may have affected the results of the
experiments. In the trade-off between natural images and im-
ages with a single object, we chose to focus on the latter. Fu-
ture research could examine the implications of this choice.

A final limitation concerns the human data on the typicality
effect. The Castro et al. (2021) study gives typicality rank-
ings for the exemplars (e.g., robin) of categories (e.g., Birds).
To derive typicality predictions from the vision models, we
sampled 6-11 images of each exemplar using Google Images
and averaged together their vector representations on the fi-
nal fully-connected layer. To reduce the noise in this aver-
age exemplar representation, a future study could collect hu-
man typicality ratings on the exact images provided to the
vision models. This would enable less noisy evaluation of the
typicality gradients of vision models and potentially increase
their alignment to human typicality rankings.
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