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Abstract—Bitcoin [1] provides pseudo-anonymity to its users,
leading to many transactions related to illicit activities. The
advent of mixing services like OnionBC [2], Bitcoin Fog [3]
and Blockchain.info [4] has allowed users to increase their
anonymity further. We tackle the pseudo-anonymity of the Bit-
coin blockchain by developing a scalable spark based framework
to find patterns in the transaction data. We demonstrate the
efficacy of our framework by performing exploratory analysis.
Furthermore, we show the capabilities of bitcoin-based graph
representations and address the issue of user profiling based on
unsupervised learning approaches for analysing Bitcoin transac-
tions and users. We convert the transaction graph of the Bitcoin
data to contain only wallet IDs and generate graph embeddings
using Variational Graph Autoencoder [5]. Additionally, we use
explainable-AI techniques and Kohonen self organizing maps
to visualize and understand the results obtained from the
unsupervised learning methods.

Index Terms—bitcoin, de-anonymization, Graph Convolutional
Networks, Variational Graph Autoencoder, Self Organizing
Maps, Apache Spark

I. INTRODUCTION

Bitcoin is a decentralized cryptocurrency built on the
blockchain technology. The underlying architecture of the Bit-
coin blockchain is built on the principles of pseudo-anonymity
and immutability. Bitcoin grew in its popularity through its
strong security based on mathematical and cryptographic prin-
ciples. This was due to growing distrust in the government
fiscal policies in countries like Venezuela, where high infla-
tion and fluctuations were rampant. The pseudo-anonymity
provided by the Bitcoin architecture enables users to form
multiple wallets without linking their ’real-life’ identities with
the wallets. While the blockchain technology offers anonymity,
there are various methods and heuristics to determine a user’s
identity. This can be done either by linking a person’s public
key to their identity, when the wallets are recipients of coins
or by behavioural analysis and study of transaction patterns.
One of the popular heuristic discussed in previous literature
is proposed by Ales Janda [6]: Whenever there are multiple
inputs (multiple wallets pooling their BTCs) in one transaction,
then the users of the wallets must be the same person or at
least know the identities of each other, therefore matching real
life identity of a person to any wallet id can be extended
to the identity for all the wallets pooling their BTCs in the
same transaction. Immutability, on the other hand, allows
anyone to view the history of all the transactions and thus,

enables interested parties to track and trace flows of BTCs
and understand usage patterns.

The emergence and proliferation of cryptocurrencies has
enabled users to circumvent the fiat currencies and avoid
scrutiny while spending or receiving money (BTCs). On one
hand, this pseudo-anonymity allows users to hide their wealth
and retain their privacy, and on the other hand, it allows users
to engage in illegal activities without authorities finding the
perpetrators. Because of plausible unlawful behaviour, there
is great research interest in profiling wallet ids to real life
identities, recognizing usage patterns, and determining the
extent and scale of such activities occurring on the Bitcoin
blockchain.

In one attempt to tackle and find out such illegal behavioural
patterns, Akcora et al. [7] focus on detecting and predicting
ransomware using topological analysis. While other such
research exists in determining techniques to detect specific
behaviour like Money laundering [8] [9], price manipulation
[10] and theft suspect identification [11], we extend the
previous framework by Shah et al. [12]: from targeting the
scalability aspect to generating an embedding which can be
used for link-prediction and clustering on a sub-graph of
bitcoin transactions. This enables us to move beyond simple
clustering algorithms as we obtain vectors for each transaction
and each wallet id, which captures associations between the
nodes. Figure 1 shows a representation of the framework and
its extension in detail.

The paper starts with the background of Bitcoin in section
II and a brief explanation about the Variational Graph Auto-
encoders in Section III. Section IV gives a brief idea about
the Kohonen Self Organizing Maps. Section V describes the
proposed framework, discusses the results and shows how
relevant information can be extracted. Section VI concludes
the paper with a discussion on future research prospects and
directions.

II. BACKGROUND OF BITCOIN

The first mentions of Bitcoin were observed in 2008 when
Satoshi Nakamoto released a white paper titled ”Bitcoin: A
Peer-to-Peer Electronic Cash System” [1]. Electronic cash is
not new, one of the first internet payment service developed
by David Chaum called DigiCash was founded in 1989 [13].
It used the concept of Blind Signatures [14] to avoid double-
spend. However, it required a server being run by a central



Fig. 1: Bitcoin Analytics Framework

authority and that for everyone to trust them. Another problem
was attributing value to digital cash. In the case of DigiCash,
to obtain ecash worth $100, one has to take $100 out of their
bank account and barter it with the bank that is issuing the
ecash. These things were a hassle, so it couldn’t gain much
popularity, leading to its early demise. So was the fate of other
internet payment services at that time.

The coin in Bitcoin can be thought of as a chain of digital
signatures, a payer transfers this coin to the payee by digitally
signing the hash of previous transaction and payee’s public
key and appends it to the end of the coin. In this way chain of
ownership can be verified. Double-spending is prevented by
announcing the transaction to the public and allowing them to
come to a consensus on the particular sequence of transactions.
A Timestamp Server ensures the chronological validity of
transactions to the payee much like a newspaper timestamps
the events of a specific period. Once the validity is confirmed,
the payee can use this transaction as a reference to spending
the acquired BTCs.

After the broadcast of transactions in the system, users
check the validity of these transactions. Finally, the valid
transactions are included by Miners in the Bitcoin blocks.
The privilege of adding the block is earned by the miners
at the expense of computational work. It requires solving a

cryptography puzzle, the solution of which becomes proof
of this computational work. Specifically, to generate a new
block, miners must find a nonce value that, when hashed with
additional fields, results in a value below a given threshold.
If such a nonce is found, miners then include it in a block
thus allowing any entity to verify the work done by the miner
(PoW). Miner is in turn rewarded with BTCs as Mined coins
and Transaction fees for all the transaction in the block

III. GRAPH STRUCTURE AND THE VARIATIONAL GRAPH
AUTOENCODER

In this section, we present the graph structure and the
mathematics behind the Variational Graph Autoencoders. We
use the implementation of the Graphical Neural network-based
variational autoencoder proposed by Kipf and Welling [5].

A. The graph structure

There are two types of nodes in the subgraph generated
by finding the strongly connected components of a suspect
wallet address: Transactions and Wallet addresses. The two
different node types hold no semantic meaning for the link
prediction tasks, therefore, we remove all the transaction nodes
and recalculate the edge weights as shown in 2. Experimental
results show that using log of the (recalculated transaction
value in terms of united states dollars (USD value) + 1) as



the edge weights performs better than using the USD value
directly. We add a value of one to every transaction to ensure
that the log of those values are always positive in nature. We
use USD value instead of BTCs as the pricing of products and
services are defined in USD instead of BTCs. We show results
on featureless nodes by using an identity matrix as the feature
matrix of size (node size, node size) in section V. While some
literature [15] use blocks as another type of node, we do not
use blocks as the transactions or wallet addresses belonging
in the same block show no semantic meaning beyond having
a similar time stamp.

New Edge Weight Calculation
192.1 * 180 / 214.5 = 161.15
192.1 * 34.5 / 214.5 = 30.9 
22.4 * 180 / 214.5 = 18.8
22.4 * 34.5 / 214.5 = 3.60
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Fig. 2: The graph structure

B. Variational Graph Autoencoder (VGAE)

The VGAE model learns latent variables for the directed
graph, which are a part of a distribution rather than a single
point. These can be best understood by the set of equations
shown below:
Let the feature matrix, X be an identity matrix with of size
(node size , node size). The adjacency matrix, Adj be a matrix
of size (node size , node size) consisting of log of the value
of bitcoins flowing from one node to another in USD.

A = D−1/2AdjD−1/2

where D is the degree matrix, and where Dii =
∑
j Aij

The Encoder Representation is given by table I. W0 and W1

are weight matrices of the respective layers.

TABLE I: Encoder representation
Layers Equations
1st layer X1 (GCN(X,A)) = RELU(AXW0)

2nd layer µ (GCNµ(X1, A)) = RELU(AX1W1)
logσ2 (GCNσ(X1, A)) = RELU(AX1W1)

We then use the parameterization trick: z = µ+σ∗ε, where ε
belongs to normal distribution with mean as zero and standard
deviation as 1.
The decoder is represented by the inner product between latent
variable Z. The output of the reconstructed adjacency matrix:

Âdj = σ(ZZT )

where σ() represents the logistic sigmoid function.
The loss function of the variational graph autoencoder is

defined as:

Loss = Eq(Z|X,A)logp(A|Z)−KL[q(Z|X,A)||p(Z)]

The first term Eq(Z|X,A)logp(A|Z) gives the reconstruction
error for the adjacency matrix. The second term is the Kul-
back Leibler Divergence, which compares the output of our
latent space with a normal distribution N(0, 1) and therefore
regularizes our latent space to a gaussian distribution.

IV. KOHONEN SELF ORGANIZING MAPS

Self organizing maps are a type of Artificial Neural Net-
works whose training is unsupervised in nature and produces
a two-dimensional map. It is a method for dimensionality re-
duction and thereafter uses the the output to visualise the data.
It differs from traditional dimsensionality reduction techniques
by using a competitive strategy to learn as opposed to error
based learning. We have modified the scala-spark implemen-
tation shown by Florent [16] to run the self organizing maps
using pyspark. This visualization can be used in conjunction
of clustering to visualise similarity between clusters.

The architecture used by us can be described by the follow-
ing points.

1) We use a hexagonal topology for creating and plotting
a 2-d lattice of network nodes. The topology consists of
30 * 30 nodes.

2) We calculate the best matching unit by using Euclidean
distance (activation distance).

3) The best matching unit’s local neighbourhood is de-
termined by the following exponential decay function:
σ(t) = σ0e

−(t/λ). The initial value of σis 1.5.
4) The decay of learning rate is calculated using this

equation : L(t) = L0e
−(t/λ). The initial learning rate

is 0.7.
Self organizing maps allows us to visualize high dimensional
data and understand the similarity between clusters.

V. THE DATA ANALYTIC FRAMEWORK

The full node of the Bitcoin blockchain consists of around
310 GB of the block data. The files containing the transaction
data and the wallet Ids are stored in BerkeleyDB 4.8 format
and the blockchain indexes(headers) are stored in LevelDB.
We use the BlockSci v-0.5 parser [17] and then use the graph-
sense library [18] to convert the data into the CassandraDB.
We also create a neo4j graph database using the bitcoin-to-
neo4j library [19]. We use both of these databases at the same
time, allowing us to have more flexibility. The main advantage
of using the above mentioned libraries is that they let us update
our data in an incremental fashion.



Fig. 3: K-means algorithm: Clusters

A. Top down approach to clustering using Apache Spark
Technology

After obtaining our data in the NoSQL format, we are
equipped to run queries and different algorithms on our data.
We have chosen Apache spark, CassandraDB, and Neo4j
GraphQL technologies for our analytics as all of them support
distributed and scalable features required to tackle a large
dataset of the size of the Bitcoin blockchain. The only draw
back is that the different database forms require around
1200 GB of space (4 times the size of the blockchain). To
appropriately demonstrate the efficacy of our framework, we
solve the following problem statement: What is the percentage
of transactions in the network used by the mixing services
around the world?

Mixing services are used to obfuscate money trails, and
flows and therefore act as money laundering services. Inter-
mediate transactions of the mixing services are characterized
by large number of inputs and large number of outputs
for effective mixing [9] [20]. The number of intermediate
transactions are far greater than the end points of a mixing
service graph for an efficient mixing.

To estimate the upper bound on the number of transactions
involved in mixing services, we run the Principle Compo-
nent Analysis to remove correlation between the data and

subsequently run the K means algorithm using the Spark
framework on 2,722,114 transactions with the value of K as 4
using a cluster. These transactions are the all the transactions
occuring in the first ten days of 2020. The features selected are
input count, output count,input total usd, fee per kwu and
fee per kb. We also normalise these features to give equal
weight-age to all the features. We get the output as seen in
figure 3.

1) Cluster 0 : This cluster represents the majority of the
transactions. These transactions maintain a proportion-
ality with the number of inputs and number of outputs
to the value of the transaction.

2) Cluster 1 : This cluster represents those transactions with
a large number of inputs.

3) Cluster 2 : This cluster represents transactions with less
number of inputs, less number of outputs but large
transaction value.

4) Cluster 3 : This cluster represents transactions with less
number of inputs, large number of outputs.

Cluster 0 is the only cluster that contains transactions with
both large number of inputs and large number of outputs and
thus has a higher probability of having transactions that are
part of the mixing services. We filter cluster 0 to have only
those records with more than threshold t input count and



output count. We set t to a value of 5, then to 10 and finally
to 30. The results of our analysis are seen in table II.

TABLE II: Percentage of transactions used in mixing services based
on different threshold values

Case Threshold
value

Number of
transactions

Percentage of total
transactions

1 5 10,515 0.386%
2 10 3,601 0.13%
3 30 763 0.028%

The percentage of transactions used in mixing services
ranges from 0.028 to 0.386%. Figure 4 shows the SOM output
of the clustering done in figure 3. We observe that cluster
one consists of a wide variety of transactions and cluster zero
occupy a particular area of the maps.

Fig. 4: Self organizing map output
1) Explainable K-Means Clustering: Explainable AI talks

about understanding results of black box algorithms like Deep
networks and unsupervised learning methods like K-means
clustering. We understand the decision boundaries of the
clustering and realize the different parameters on which the
clusters are formed. We extended the work done by Frost
et al. [21] to work in a spark based framework. We modify
the traditional distributed version of decision tree so that we
maintain a trade off between depth of the tree and the accuracy,
and the explainability of the clustering in a low cost manner.
The tree formed in the clustering in the above step is shown in
figure 5. We have limited the depth of the tree to a maximum of
length five considering the trade of between the Accuracy and
the construction cost. We observe that only two of the classes
are represented in the decision tree. When we build the tree
to a length of nine, then we observe that all the clusters have
representation in the tree.

B. Embedding Generation and Link Prediction

We process the Neo4j graph database to obtain the adja-
cency matrix as defined in Section III. Thereafter we construct
a sub-graph consisting of the nodes and edges that are a part
of the strongly connected components of a particular suspect
address. Then we use Variational Graph Autoencoders with
the configuration described in Section III for link prediction
and embedding generation. We also implement a simple Au-
toencoder and a Structural Deep Network Embedding [22] to
compare the results for link prediction.

Fig. 5: Explainable K-means Clustering
1) Link Prediction: The model recreates a modified version

of the adjacency matrix with all the edge weights set to one
or zero, in accordance to the presence or the absence of
an edge. While the model tries to reconstruct the modified
adjacency matrix, we use the original adjacency matrix for the
message passing abilities of the Graphical Neural Networks.
This allows us to capture the graph topology accurately.
The size of the first hidden layer is 32 and the size of the
second hidden layer is 16, thus the latent space consists of
16 dimensions. Experimental results work best on these sizes
of the hidden layers. We run three models: Graph Autoen-
coder (GAE), Structural Deep Network Embedding(SDNE),
Variational Graph Autoencoder(VGAE) for 200 epochs and
the results for them are seen in table III. From this table, we
observe that Variation Graph Autoencoder gives competitive
performance as compared to Graph Autoencoder and Struc-
tural Deep Network Embedding.

TABLE III: Link Prediction
Model GAE SDNE VGAE
Test set: Area
under the curve
(ROC)

82.5780% 61.4553% 93.4462%

Test set: Average
Precision

76.3090% 58.3181% 91.4099%

The receiver operating characteristic curve for the varia-
tional graph autoencoder can be observed in the figure 6.
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Fig. 6: ROC Curve for VGAE
2) Embedding Generation: We use the latent space formed

in the bottleneck framework of the Variational Graph Au-
toencoder. We judge the quality of the node embeddings



with the help of self organizing maps. We cluster the output
of the embeddings using K-means algorithm and thereafter
visualize these clusters using Self organizing maps. Based on
the observations of the result of the elbow test in figure 7, we
set the value of K as 17. The outcomes of the self organizing
maps are seen in figure 8. The most notable observation from
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Fig. 7: K Means clustering: Elbow Test
the visualizations of the embeddings in figure 8 is that the clus-
ters are distinct and well separated. Analysing the sub-graph
consisting of the nodes of a particular cluster, gives insights to
interested persons about the structure and the properties of the
graph that lead to the following embedding generation. These
properties can be linked to the real-life identities and patterns
of suspect users of the Bitcoin blockchain.

Fig. 8: Self organizing map output for the generated embeddings

VI. CONCLUSION AND FUTURE RESEARCH PROSPECTS

The proposed framework provides a scalable and fault-
tolerant architecture to perform exploratory and investigatory
analysis of the Bitcoin blockchain. The framework consists
of a top-down approach using distributed computation tech-
nologies for overall analysis which supports various generic
algorithms and querying methods. At the same time, the frame-
work provides granularity for a detailed analysis of particular
portions of the Bitcoin transaction graph with the help of graph
embeddings and predicts associations between the nodes of
the graph by using link prediction methods. Further research
can be done in forming homogeneous transactions as well
as wallet-id graphs. The graphs can be used for generating
embeddings which take into account certain node features.
A combination of an experimental approach coupled with

mathematical probabilities to compute proportions of BTCs
transmitted from one transaction to another can be used to
form different heuristics to adequately assign weights to edges
of the homogeneous graphs.
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